Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers.
نویسندگان
چکیده
Cell transplantation is a promising therapy for a myriad of debilitating diseases; however, current delivery protocols using direct injection result in poor cell viability. We demonstrate that during the actual cell injection process, mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we hypothesize that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. We use a controlled in vitro model of cell injection to demonstrate success of this acute protection strategy for a wide range of cell types including human umbilical vein endothelial cells (HUVEC), human adipose stem cells, rat mesenchymal stem cells, and mouse neural progenitor cells. Specifically, alginate hydrogels with plateau storage moduli (G') ranging from 0.33 to 58.1 Pa were studied. A compliant crosslinked alginate hydrogel (G'=29.6 Pa) yielded the highest HUVEC viability, 88.9% ± 5.0%, while Newtonian solutions (i.e., buffer only) resulted in 58.7% ± 8.1% viability. Either increasing or decreasing the hydrogel storage modulus reduced this protective effect. Further, cells within noncrosslinked alginate solutions had viabilities lower than media alone, demonstrating that the protective effects are specifically a result of mechanical gelation and not the biochemistry of alginate. Experimental and theoretical data suggest that extensional flow at the entrance of the syringe needle is the main cause of acute cell death. These results provide mechanistic insight into the role of mechanical forces during cell delivery and support the use of protective hydrogels in future clinical stem cell injection studies.
منابع مشابه
The effect of cerebrospinal fluid-derived exosomes on neural differentiation of adipose mesenchymal stem cells in alginate hydrogel scaffold
Nowadays, researchers have made extensive efforts to find new treatments for nerve damage. Meanwhile, the role of exosomes in cell-cell communication is considered to be a new mechanism. Exosomes can act as suitable differentiating agents. The aim of this study was to investigate the differentiating effect of cerebrospinal fluid-derived exosomes on adipose mesenchymal stem cells in alginate hyd...
متن کاملBIO treatment enhances rat marrow-derived mesenchymal stem cell in vitro proliferation and viability
Introduction: Previous investigations have indicated that the presence of BIO (6-Bromoindirubin-3-Oxime) in medium of some cell culture enhances the cell proliferation and viability. The aim of the present study was to investigate the BIO effects on in vitro expansion of rat marrow-derived mesenchymal stem cells (MSCs) culture. Methods: In the present experimental study, bone marrow cells from ...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملEvaluation of the effect of low-level laser irradiation on viability and ROS production in human hair follicle stem cells
Background: Low-level lasers are used for various medical applications including wound healing and hair loss treatment. Cell Therapy using skin stem cells could be a novel approach to hair transplantation. However, there is no study on the effect of low-level laser on the hair follicle stem cells. So, in this study, we investigated the effect of low level laser irradiation on viability and ROS ...
متن کاملAn Efficient In Vitro Culture System To Amplify Spermatogonia Stem Cell Markers
Background: Proliferation of spermatogonial stem cells (SSCs) can be a treatment for infertile men. Here, we design an efficient method based on culturing in the presence of Sertoli cells to improve the expression level of some specific spermatogonia stem cell genes during two weeks post culture. Materials and Methods: Cells were derived from neonatal (2-6 days old) mice testes and were cultur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 18 7-8 شماره
صفحات -
تاریخ انتشار 2012